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MOTIVATIONS

■Core-collapse supernovae of massive stars M ⪆
8M⊙ emit a huge number of neutrinos (∼ 1058).
■The physics of matter under extreme conditions is
strongly flavor-dependent (nucleosynthesis, neutron-
proton ratio, spectrum splits...).
■ Interesting quantum many-body problem governed by
the weak interaction.
■Describing the full dynamic is very complicated due
to the collective neutrino oscillations that make the
equation non linear.

■We want to simulate the real time evolution:

|Ψ(t)⟩ = U(t) |Ψ0⟩ , U(t) = e−iHt . (1)

PHYSICAL DESCRIPTION

■Two-flavors approximation (SU(2) model) to encode
the flavor state in a qubit state:

|νe⟩ 7−→ |0⟩ , |νx⟩ 7−→ |1⟩ (2)

■N neutrinos encoded into N qubits.
■The flavor Hamiltonian of N neutrinos is:

H =
N∑
i=1

b · σi
+

N∑
i<j

Jijσi · σj
(3)

1-body term: vacuum mixing

b =
δm2

4Eν
(sin(2θν), 0,− cos(2θν)) .

2-body term: νν-interaction

Jij :=
µ

N
(1− cos(θij)) , µ =

√
2GFρν .

■ Initial state for N = 4: |Ψ0⟩ = |0011⟩.
■We can look at the inversion probability:
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■Symmetry under particle exchange:

0←→ 3 , 1←→ 2 . (4)

UNITARY IMPLEMENTATION

■To perform the quantum simulation we need a
quantum gate decomposition of the U(t) opera-
tor (2N × 2N unitary matrix on the flavor basis):
■Divide 1-body and 2-body parts that commute:

U(t) = U2(t)U1(t) . (5)

■Approximate the 2-body part as a product of pair
interactions.

■Each 2-qubit gate uij = eiα(X⊗X+Y⊗Y +Z⊗Z) can be
implemented as [3]:

Rz(2α− π
2) • Rz(

π
2)

Rz(−π
2) • Ry(

π
2 − 2α) Ry(2α− π

2) •

■The order in which the pairs interact changes the
error due to the commutators.
■The swap network proposed in Ref. [2] imple-
ments the interaction on a chain of linearly con-
nected qubits.
■All-to-all connectivity allows for best ordering
and lower circuit complexity.
■Machine-aware compilation.

SINGLE TROTTER STEP

PROPAGATION

■The propagator is applied to the same initial state
for different Trotter steps dt = 4, 8, ..., 40 µ−1.
■Results obtained from the simulations on Quantin-
uum’s trapped-ion device:
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MULTIPLE STEPS EVOLUTION

■Evolve the system until T applying k = T/dt Trot-
ter steps:

|Ψ(T )⟩ = U2(dt)
kU1(dt)

k |Ψ0⟩ . (6)

■Real quantum machine results:
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■Very long circuits with a huge number of gates:

k 1 2 3 4 5 6 7 8 9 10
# ZZ 18 36 54 72 90 108 126 144 162 180

# SU(2) 36 68 100 132 164 196 228 260 292 324

COMPLEXITY ALGORITHM SCALING

■The number of 2-qubit gates needed to evolve up
to T with an error < ϵ scales polynomially with N :

Decomposition type Circuit complexity

First order Trotter O
(
T 2µ2

ϵ N 3
)

Second order trotter O
(
T 3/2µ3/2
√
ϵ

N 5/2
)

Qubitization O
(
TµN 3 + log(1/ϵ)N 2

)

CONCLUSION

■Fully connected qubits allow for more freedom in
gate decomposition.
■Quantum circuit optimization is a crucial step in or-
der to perform simulations on a near-term quantum
device.
■The complexity of the implementation of time evo-
lution scales polynomially with the number of neutri-
nos.
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